The 32nd Annual Vojtěch Jarník International Mathematical Competition Ostrava, 1^{st} May 2025 Category II

Problem 1 Let $x_0 = a$, $x_1 = b$, $x_2 = c$ for given numbers $a, b, c \in \mathbb{R}$, and let $x_{n+2} = \frac{x_n + x_{n-1}}{2}$ for $n \ge 1$. Show that the sequence $(x_n)_{n=0}^{\infty}$ converges, and find its limit.

[Marcin J. Zygmunt / University of Silesia in Katowice]

Solution We have

$$x_{n+4} - x_{n+3} = \frac{x_{n+2} + x_{n+1}}{2} - \frac{x_{n+1} + x_n}{2} = \frac{1}{2}(x_{n+2} - x_n) = \frac{1}{2}\left(\frac{x_n + x_{n-1}}{2} - x_n\right)$$
$$= -\frac{1}{4}(x_n - x_{n-1}),$$

so (x_n) is a Cauchy sequence (in \mathbb{R}), hence it converges. Let now $y_n = x_{n+1} + x_n + \frac{1}{2}x_{n-1}$ for $n \ge 1$. We have

$$y_{n+1} = x_{n+2} + x_{n+1} + \frac{1}{2}x_n = \frac{x_n + x_{n-1}}{2} + x_{n+1} + \frac{1}{2}x_n = x_{n+1} + x_n + \frac{1}{2}x_{n-1}$$

= y_n
:
= $y_1 = x_2 + x_1 + \frac{1}{2}x_0 = c + b + \frac{1}{2}a$,

As we have

$$\lim_{n \to \infty} y_n = 2\frac{1}{2} \lim_{n \to \infty} x_n$$

we finally get

$$\lim_{n \to \infty} x_n = \frac{a + 2b + 2c}{5}$$

r	-	-	-	٦.
L				
L				
L				л

The 32nd Annual Vojtěch Jarník International Mathematical Competition Ostrava, 1st May 2025 Category II

Problem 2 Let A, B be two $n \times n$ complex matrices of the same rank, and let $k \in \mathbb{N}$. Prove that $A^{k+1}B^k = A$ if and only if $B^{k+1}A^k = B$. [Pirmyrat Gurbanov and Murat Chashemov / IUHD, Turkmenistan]

Solution Our statement is symmetric in A and B, so it is enough to prove the "only if" implication. We assume that $A^{k+1}B^k = A$ and we prove that $B^{k+1}A^k = B$.

We have ker $B \subseteq \ker A^{k+1}B^k = \ker A$. But rank $A = \operatorname{rank} B$, so we get ker $B = \ker A$. On the other hand, we have

$$\operatorname{rank} A = \operatorname{rank} A^{k+1} B^k \leq \operatorname{rank} A^{k+1} \leq \operatorname{rank} A.$$

So we have rank $A^{k+1} = \cdots = \operatorname{rank} A^2 = \operatorname{rank} A$. It is clear that ker $A \subseteq \ker A^2$, so we have ker $A = \ker A^2$. Now we claim that $\mathbb{C}^n = \ker A \oplus \operatorname{Im} A$. In fact, it is enough to prove that ker $A \cap \operatorname{Im} A = 0$. If $x \in \ker A \cap \operatorname{Im} A$, then there exists $y \in \mathbb{C}^n$ such that x = Ay, so $A^2y = Ax = 0$, i.e., $y \in \ker A^2 = \ker A$. This gives x = Ay = 0. So we can choose a basis such that A is of the form

$$\begin{pmatrix} A_1 & 0 \\ 0 & 0 \end{pmatrix},$$

where A_1 is invertible. Since ker $A = \ker B$, we may assume that B is of the following form under the same basis:

$$\begin{pmatrix} B_1 & 0 \\ B_3 & 0 \end{pmatrix}.$$

Finally, from $A^{k+1}B^k = A$ we see that $A_1^{k+1}B_1^k = A_1$. So we have $A_1^kB_1^k = I_r$ since A_1 is invertible. Now it is easy to see that $B^{k+1}A^k = B$.

The 32nd Annual Vojtěch Jarník International Mathematical Competition Ostrava, 1st May 2025 Category II

Problem 3 Evaluate the integral

$$\int_0^\infty \frac{\log(x+2)}{x^2 + 3x + 2} \, \mathrm{d}x \, .$$

[Asen Bozhilov / Sofia University]

Solution Using change of variables $x \to x - 1$ we obtain

$$\int_0^\infty \frac{\ln(x+2)}{(x+1)(x+2)} \, dx = \int_1^\infty \frac{\ln(x+1)}{x(x+1)} \, dx$$

Let us define $I(a) := \int_{1}^{\infty} \frac{\ln(1+ax)}{x(1+x)} dx$. We need to find I(1). Clearly I(0) = 0. Moreover

$$I'(a) = \int_1^\infty \frac{\partial}{\partial a} \frac{\ln(1+ax)}{x(1+x)} \, dx = \int_1^\infty \frac{1}{(1+x)(1+ax)} \, dx = \frac{\ln\left(\frac{2a}{a+1}\right)}{a-1}.$$

Hence

$$I(1) = \int_0^1 I'(a) \, da = \int_0^1 \frac{\ln\left(\frac{2a}{a+1}\right)}{a-1} \, da$$

It is well-known that $J := \int_0^1 \frac{\ln a}{a-1} \, da = \frac{\pi^2}{6}$. Thus

$$I(1) = \int_0^1 \frac{\ln\left(\frac{2a}{a+1}\right)}{a-1} \, da = J - \int_0^1 \frac{\ln\left(\frac{a+1}{2}\right)}{a-1} \, da = J - \int_0^1 \frac{\ln\left(1-\frac{a}{2}\right)}{a} \, da$$
$$= J - \int_0^{1/2} \frac{\ln(1-a)}{a} \, da.$$

Thus we are left with finding the last integral which we denote by H. Then, using integration by parts, we obtain

$$H = \int_0^{1/2} \log(1-a) \, d\log a = -\log a \log(1-a) \Big|_{a=0}^{1/2} - \int_0^{1/2} \frac{\log a}{1-a} \, da$$
$$= -\ln^2 2 + \int_{1/2}^1 \frac{\ln(1-a)}{a} \, da$$

On the other hand $H + \int_{1/2}^{1} \frac{\ln(1-a)}{a} da = -J$. The last two relations between H and $\int_{1/2}^{1} \frac{\ln(1-a)}{a} da$ allow us to find $H = -\frac{\pi^2}{12} - \frac{1}{2} \ln^2 2$

The 32nd Annual Vojtěch Jarník International Mathematical Competition Ostrava, 1st May 2025 Category II

Problem 4 Let $D = \{z : |z| < 1\}$ be the unit disk in the complex plane, and suppose that $f: D \to D$ is a holomorphic function fulfilling the property $\lim_{|z|\to 1} |f(z)| = 1$. Let the Taylor series of f be $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Prove that $\sum_{n=0}^{\infty} n|a_n|^2$ is equal to the number of zeros of f (counted with multiplicities).

[Géza Kós / Eötvös Loránd University, Budapest] Solution If f is constant then $|a_0| = |f| = 1$ and $a_1 = a_2 = \ldots = 0$, so the statement is trivial.

Suppose that f is not constant. By the argument principle, the function attains all values the same number of times. Let this number be K. In particular, K is the number of zeros.

Since f(D) covers D K times, the area of the range with multiplicities is $K\pi$. On the other hand, that area can be expressed as

 \mathbf{so}

	_
L	
_	_