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Problem 1 Let f : R→ R be a continuous function satisfying

f(x+ 2y) = 2f(x)f(y)

for every x, y ∈ R. Prove that f is constant. [10 points]

Solution By taking y = 0 we obtain f(x) = 2f(x)f(0) for any x ∈ R. If f(0) 6= 1
2 , it follows that f(x) = 0 for

all x ∈ R and f is a constant function.
Therefore, in the rest of the proof assume that f(0) = 1

2 . After taking x = 0 in f(x + 2y) = 2f(x)f(y) we
get f(2y) = f(y) for any y ∈ R.

Let a ∈ R. One can easily check that f(a) = f( a
2n ) for all n ∈ N. Therefore, since f is continuous, we obtain

that

f(a) = lim
n→∞

f(a) = lim
n→∞

f
( a
2n

)
= f

(
lim

n→∞

a

2n

)
= f(0) =

1

2

and the proof is complete. �
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Problem 2 We say that we extend a finite sequence of positive integers (a1, . . . , an) if we replace it by

(1, 2, . . . , a1 − 1, a1, 1, 2, . . . , a2 − 1, a2, 1, 2, . . . , a3 − 1, a3, . . . , 1, 2, . . . , an − 1, an) ,

i.e., each element k of the original sequence is replaced by 1, 2, . . . , k−1, k. Géza takes the sequence (1, 2, . . . , 9)
and he extends it 2017 times. Then he chooses randomly one element of the resulting sequence. What is the
probability that the chosen element is 1? [10 points]

Solution We show by induction that number j ∈ {1, 2, . . . , 9} occurs
(
9−j+m

m

)
times in the m times extended

sequence. Every j ∈ {1, 2, . . . , 9} occurs once in the original (0 times extended) sequence. Let us now perform
the induction step. Number of occurences of j in the m times extended sequence is equal to the number of
occurences of all numbers larger than or equal to j in (m−1) times extended sequence, which is (by the inductive
assumption) equal to(

9− j +m− 1

m− 1

)
+

(
9− (j + 1) +m− 1

m− 1

)
+ · · ·+

(
9− 9 +m− 1

m− 1

)
.

This sum is by a well known identity equal to
(
9−j+m

m

)
and the induction step is done. It follows that in the

2017 times extended sequence number 1 occurs
(
9−1+2017

2017

)
times among

9∑
j=1

(
9− j + 2017

2017

)
=

(
9 + 2017

2018

)
elements. So, the probability of choosing 1 is

2025!

2017!8!
· 2018!8!

2026!
=

2018

2026
.
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Problem 3 Let P be a convex polyhedron. Jaroslav writes a non-negative real number to every vertex of P in
such a way that the sum of these numbers is 1. Afterwards, to every edge he writes the product of the numbers
at the two endpoints of that edge. Prove that the sum of the numbers at the edges is at most 3

8 . [10 points]

First solution We consider the graph G = (V,E) on the sphere (or equivalently, in the plane) induced by the
vertices and edges of P and write v ∼ w if v, w are connected by an edge. Denote by

A =

{
(av)v∈V ∈ R|V | : av ≥ 0,

∑
v∈V

av = 1

}

the set of possible numberings, and let
f ((av)v∈V ) =

∑
v∼w

avaw

We need to prove f ((av)v∈V ) ≤ 3
8 whenever (av)v∈V ∈ A.

A is compact and f is continuous, therefore m := max(av)v∈V ∈A f ((av)v∈V ) is assumed. Let (a∗v)v∈V ∈ A be
such that f ((a∗v)v∈V ) = m and such that the number of zeroes in (a∗v)v∈V is maximal among all configurations
(av)v∈V ∈ A such that f ((av)v∈V ) = m. We are going to study this particular optimal configuration.

Lemma 1 Any two vertices w,w′ with non-zero a∗w, a
∗
w′ are connected by an edge.

Proof Let w,w′ be two vertices with non-zero a∗w, a
∗
w′ , and assume they are not connected by an edge. W.l.o.g

assume a∗w ≤ a∗w′ . Note that

f ((a∗v)v∈V ) = a∗w
∑
v∼w∗

a∗v + a∗w′
∑

v∼w′∗
a∗v +

∑
v,v′∈V \{w,w′}

v∼v′

a∗va
∗
v′

Now consider
g(ε) := f

(
a∗w − ε, a∗w′ + ε, (av)v∈V \{w,w′}

)
.

This is a linear function of ε. Because (a∗v)v∈V is an optimal configuration and a∗w, a
∗
w′ are nonzero, we have

that (
a∗w − ε, a∗w′ + ε, (av)v∈V \{w,w′}

)
∈ A

for all ε in a neighborhood of 0 and

g(ε) = f
(
a∗w − ε, a∗w′ + ε, (av)v∈V \{w,w′}

)
≤ f ((a∗v)v∈V ) = g(0)

But then g is a linear function with a local maximum, so it must be constant. This implies

m = g(0) = g(a∗w) = f
(
0, a∗w + a∗w′ , (av)v∈V \w,w′

)
.

On the other hand,
(
0, a∗w + a∗w′ , (av)v∈V \{w,w′}

)
∈ A. This implies that

(
0, a∗w + a∗w′ , (av)v∈V \{w,w′}

)
is an

optimal configuration with an even larger number of zeroes than (a∗v)v∈V , contradicting the choice of (a∗v)v∈V .
�

The lemma implies that the vertices with non-zero a∗v induce a complete subgraph of G. Because G is a
planar graph, this subgraph must be planar as well. It is well-known that a complete graph is planar if and only
if it has at most 4 vertices. We conclude that at most 4 of the a∗v are non-zero. Let these be av1 , av2 , av3 , av4
(some of them possibly 0, if there are less than 4 non-zero a∗v). Then

m = f ((a∗v)v∈V ) ≤ av1av2 + av1av3 + av1av4 + av2av3 + av2av4 + av3av4

and by the following lemma we conclude m ≤ 3
8 , as claimed.

Lemma 2 Let a, b, c, d ∈ R such that a, b, c, d ≥ 0, a+ b+ c+ d = 1. Then

ab+ ac+ ad+ bc+ bd+ cd ≤ 3

8



Proof We have that

3

8
− ab+ ac+ ad+ bc+ bd+ cd =

3

8
(a+ b+ c+ d)2 − (ab+ ac+ ad+ bc+ bd+ cd)

=
3

8

(
a2 + b2 + c2 + d2

)
− 1

4
(ab+ ac+ ad+ bc+ bd+ cd)

=
1

8

(
(a− b)2 + (a− c)2 + (a− d)2 + (b− c)2 + (b− d)2 + (c− d)2

)
≥ 0

�

�

Second solution Let G, A and f be as in the first solution. By the four color theorem applied to the planar
graph G, one can partition V into four sets V1, V2, V3, V4 in such a way that there are no edges between vertices
within the same set. Now for (av)v∈V ∈ A one can write

f ((av)v∈V ) =
∑

v,w∈V
v∼w

avaw

≤
∑

1≤i<j≤4

∑
v∈Vi,w∈Vj

v∼w

avaw

≤
∑

1≤i<j≤4

∑
v∈Vi,w∈Vj

avaw

=
∑

1≤i<j≤4

(∑
v∈Vi

av

)( ∑
w∈Vj

aw

)

Now the conclusion follows by applying lemma 2 to
∑

v∈V1
av,
∑

v∈V2
av,
∑

v∈V3
av,
∑

v∈V4
av. �
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Problem 4 Let f : (1,∞) → R be a continuously differentiable function satisfying f(x) ≤ x2 log(x) and
f ′(x) > 0 for every x ∈ (1,∞). Prove that ∫ ∞

1

1

f ′(x)
dx =∞ .

[10 points]

Solution Let a > e. By the Cauchy-Schwarz inequality,(∫ a

e

1

f ′(x)
dx

)(∫ a

e

f ′(x)

(x log(x))2
dx

)
≥
(∫ a

e

1

x log(x)
dx

)2

= (log(log(a)))2

On the other hand, by integration by parts and the assumption, we get∫ a

e

f ′(x)

(x log(x))2
dx =

f(x)

(x log(x))2

∣∣∣∣∣
a

e

+ 2

∫ a

e

f(x)

(x log(x))3
(log(x) + 1)dx

=
f(a)

(a log(a))2
− f(e)

e2
+ 2

∫ a

e

f(x)

(x log(x))3
(log(x) + 1)dx

≤ 1

log(a)
− f(e)

e2
+ 2

∫ a

e

x2 log(x)

(x log(x))3
(log(x) + 1)dx

=
1

log(a)
− f(e)

e2
+ 2

∫ a

e

1

x log(x)
+

1

x log(x)2
dx

=
1

log(a)
− f(e)

e2
+ 2 log(log(a)) + 2− 2

1

log(a)

≤ 2 log(log(a)) + 2− f(e)

e2

Because f is strictly increasing,
∫ a

e
f ′(x)

(x log(x))2 dx is positive. Therefore we can combine the two inequalities as
follows:

∫ a

e

1

f ′(x)
dx ≥

(∫ a

e
1

x log(x)dx
)2

∫ a

e
f ′(x)

(x log(x))2 dx

≥ (log(log(a)))2

2 log(log(a)) + 2− f(e)
e2

The right hand side obviously tends to infinity as a→∞. Hence also∫ ∞
1

1

f ′(x)
dx ≥

∫ ∞
e

1

f ′(x)
dx = lim

a→∞

∫ a

e

1

f ′(x)
dx =∞

�


