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Problem 1

a) Is it true that for every bijection f: N — N the series
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is convergent?

b) Prove that there exists a bijection f: N — N such that the series
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is convergent.

(N is the set of all positive integers.) [10 points]

Problem 2 Let A and B be two complex 2 x 2 matrices such that AB — BA = B2. Prove that AB = BA.

[10 points]
Problem 3 Prove that there exist positive constants ¢; and co with the following properties:
a) For all real k > 1,
1
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b) For all real k > 1,
1
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[10 points]

Problem 4 For every positive integer n let o(n) denote the sum of all its positive divisors. A number n is
called weird if o(n) > 2n and there exists no representation

n=dy+de+--+d,

where r > 1 and dy, ..., d, are pairwise distinct positive divisors of n.

Prove that there are infinitely many weird numbers. [10 points]
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